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ON THE TEEORY OF -UNGTEADY:PLANING AND THE MOTION
OF A WING WITH VORTEX SEPARATION*

By L. Sedov
I. PRELIMINARY OBSERVATIONS

The disturbances imparted to the water by a planing
body £1ve rise to a wave form of motion.on the free sur-
face, the length of the waves increasing indefinitely with
increase 1in the Froude number and being directly propor-
tional to the latter in the case of the plane or two-
dimensional problem. Near the planing surface the general
Plcture of the flow as shown by tests presents a true jet
or spray character; l.e., at some dlstairce ahead of the
body the water surface 1s practically undisturbed, while
immediately forward of the body the water is thrown off in
a spray.

The high-speed planing motion of the body gives rise
to -very large accelerations in the fluid and, in this re-
spect, resembles the phenomenon of impact. The chilef
forces that determine the motion of the particles of fluid
near the body apvear to be the result of the large pres-
sure gradients. 4s in the case of impact, it is there-
fore permissible to heglect the weight of the water.

. The "dynamic reaction of the water 1s completely de—
termined by 1ts motion in the immédiate neighborhood of
the planing body. At large Froude numbers the effect of
the welght shows up to any appreciable extent only at
some distance from the body, so that the flow near the
body can be considered aAs part of a flow of an infinitely:
extendinz welghtlees fluld.. The same conclusion can also
be reached from another point of view. 'Let us consider a
series. of motions for which the angles of inclination to
the watér surface are the same and thé wetted portions of
the bottoms geometrically similar.,” Applying the Lagrange
integral to the absgolute potentimal motion of the heavy
fluld, we obtaln the boundary condition of constant pres—
sure at the free surface in the form

Report Noi 252, of- the Oen%ral Aero-Hydrodynamical Insti—
tute. Moscow. 1936. ,
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Refro-o 1)

vhere ¢ 18 the'tlme.
L) tha'velooity.@dtential.
v the velocity of the fluld,
& the accelerat;on of gravity,

and ¥y a coordinate taken normal to the initlal wator
level.

.for steady planing, we have

30 .o 09
ot - ox

"whore ¢ 1s the translational veloclty in the forward-
direction coinciding with the x axis. We shall intro=-
.duce nondimensional magnitudes with the aid of the rela-
- tlons: 208 1 : ' .

(s

2 o 3 v cVv h
—meses I3 [R———— = H =
axr- 3 1. 137 71

vhere h 18 a certain characteristic dimenslon. Boundary
condition (1) then assumes the form
. _ 3Py v;2  gh

St e S n-o ()

From relation (2), 1t is clear that for the same val-
a .
ues of the Froude number ¥ = EE the motions become dynam~

ically similar. The values ggl. v,s» and y, at the
- x
1

free surface everywhere except at a very smell reglon at
the edges of the planing surface are of the order of the
angle of attack B, which will be assumed as infinitely
small in what follows. If the motlon of the fluld be de-
termined by the methods of the theory of waves of small
amplitude, then in condition (3) it 1o necessary to ne-
glect v,3. . At & emall value of the Froude number

T = E; the first.apd last torms in (2) are of the order
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of B end in thie case the weight cannot be nogleoted,

= e

For a large vnlue of the rroude number. however; l'zlw

the third term has the order of 8%, and therefore to an
accuracy of the second order of smallness. _ -

B_?.L.=O . (3)
.axl

Thus, for large values of the Froude numdber ¥, 4in the
approximate solution, 1t 1s necessary to use boundary con-
dition (3), which is equivalent to assuning the fluld as
woelghtless. In what follows, the case wlll ba considered

where the planing 1 assumed to take place at high Froude
numbers. .

It will be shown below (sectlon II) that in the above
case the motion of the water at each instant of time may
be conslidered as the result of the sinultaneous action on
it of a system .of impulses distributed over the area swept
out by the planing surface, the varlation with. time o¢f the
impact pressures on the froe surface being neglected. Thus
stated, the planing problem differs from that of impact
on the water only in that in the former it 1s necessary to
take account of the disturbance of the water remaining be=-
hind or, expressed otherwise, it is necessary to tako - ac-

count of the aeymmetry of the flow in front of and behind
the body.

The energy required to maintaln the motion of the dody
nay be considered as consisting of the energy of the dls-
turbed water and the energy dlssipated by the dissipative
forces of viscosity. The drag may be computed by the
energy imparted to the fluld by the body in a unit of die-~
tance. The energy of the disturbance 18 neds up of the
-energy contained in the sprays thrown off ahead of the body
end that of the. disturbances remaining behind.

The flow pbenomena at the edgee in . the case of the.
two~-dimensional problem were made the eubJect of specilal
‘study ‘by Wagner (reference 1), In his work, he presents
methods -for tha theofetical computation eof the pertlon of
the drag contriduted by the spray at the forward edge.

That portion of the. dras due to the dieturbence remaining A
behind the body ie analogoue to ths induced drag of a wing.\
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. For establishing the inltial disturbanee of the main
flow, the effect of the vliscosity, by comperison with that
of the inertia of the water, i1s negligible. On the other
hand, the viscoslty is of appreciable effect on the spray
motion of the water and on the boundary-layer motion. A4t
small angles of attack, the drag due to the fluld friction
at the bottom mey be very large. The computation of this
drag 1s complicated dy the fact that at the forward portion
the frictional forces on the bottom are directed forward,
8o that the speed of the water in the spray 1s greater than
that of the bottom.

The exact solution of the three-dimensional hydrody=-
namic problem of the planing motion of a body on the sur-
face of an incompressible, 1deal, and weightless fluid
presents insurmountable mathematical difficulties and may
therefore be treated only approximately. The two-dimen-
sional problem of the steady planing motion belcngs to the
type of flow problems considered by Eirchhoff. The solu-
tion of the two-dimoensional planing problem for a flat
plate has been given by Chaplygin with the. participation
of Gurevitch and Yanpolsky (reference 2). A comparison of
thig solution with the results of tests shows a very good
qualitative agreement. Particularly noteworthy is the good
qualitative agreement of the theoretical law of pressure
distribution with the pressure dlstribution determined dy
experiment. The lack of quantitative agreement may be ex~
plalned by the finite span employed 1n the tests since the
pressure strongly depends on the span. .

In a fundamental paper on the theory of planing,:
WVagner, investlgating on the one hand flows of the type
of Kdrchhoff and on the other rotational flows about
thin profiles in an infinite fluld, showed that for infini-
tesimal angles of attack, to an accuracy of the second
order of smallness, the 1lift force on the planing surface
is ‘'equal to half the 1ift on a wing of the same profile.
The flows at the edges of the wing and the planing surface
are different 1n character. 1In particular, in planing,
thin sprays are obtalned at the forward edge, which result
in aen additional drag, whereas, in the case of a wing,
there are suction forces .at the corresponding positions.
According to Wagner, the drag due to the formation of the
sprays is equel 1n magnitude to half the suctlon forece on
the corrésponding wing. It 1s for this reason that the
drag due to the sprays is not difficult to compute. The
conclusion also readily follows that the wing alwaye has
better characteristlics than the corresponding planing
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From the nathematical .point of view, the plan~

ing .probTem ocan easily -be- reducdd,.as-we.-shall show .below,

to that

of the wing theory by making use of the approxi-

mate methods that have been applied with great success in

the theo

ry of thin wings and in the theory of waves of

small .anplitude. ' The approximations made are equivalent

to those

‘of ¥Wagner., . .

On figure 1 are éiveﬁ tﬁe exﬁerimental data derived

~-fronm .the

tests of Sottorf.(reference 3). The tests were

conducted on flat plates. The aspect ratios® A= 1!/b

-where 1
and b
‘nate axil

where .A

and P

! 1& the wetted length, as -measured in the tests
the apan, laid off on the -x axis. On the ordl-
8 the coefficient X 1s taid off:

A o '
K = —w—x— 4
pplte”p : (@)

18 the 1lift force

the denslty of the water.:

Yron these data; corresﬁondtng to various conditions
of motion, 1t may be seen that the coefficient K depends

only on

cated by
ratio of
forcde of
line for
ing this
qualltat

1
the ratio l—u The curve of K = L indi-
: b 2(1 + 2A7) _
the solild line shows the Adependence on the aspect

the value of the coefficlent for half the 1lift

the wing as givon by the theory of the .1lifting
elliptic dilstridution of the ecirculation. Compar-
curve with the tost points, ‘weé -nay observe &

ivé agreement. For A ~ 2,- - we also have a good

quantitative agreement. I%t should be nbserved that the
exverimontal values of the coefficlant .K .for the wilngs
also do not entirely coinclde with. the theoretical -values

"and for.
‘An the g

Pro

small values of A, for example, they differ as
iven case. - - . :

ceeding to the study of the unsteady or nonuniforn

motion of tho body - within or along the'aurface_of the fluid

*In aerodyhamics.fthe“aspect'ratié has been defined as b/1,

. Whan app
to take

lied to planing, 1t seemed to ms nore convenlent
as the aspect ratlo the ratio l'lb. since the terms

1! the wetted -length and b the.width of step, may be

conslder

ed as definltely estadblished parameters. .
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ve. are immediately confonted with the difficulties char~
acteristic of thesme problems, In the case of unsteady
motion, the mechanical characterlstics of the dbody-fluld
system are not in general defined by very simple geomet-
ric and klnematic data.for the body at the instant con-
sldered as is the.case for steady motion. If, for exam-
ple, in a given time interval, we have a constant acoel~-
erated forward motion, i1t would be incorrect to say that
the hydrodynanlc reaction of the water may be expressed
as & function of the veloclty, acceleratlion, and geomet-
ric parameters glving the body position. The redction of
the water will, in general, also depend on the oharacter
of motion of the body 1in the preceding.time interval, since
the body may have previously glven a large distarbance to
the water.

In the theoretical study of unsteady motion, a num~
ber of assumptions are usually made for computing the
hydrodynamic forces. One most often made is the so+called
fgtationary forces! hypothesls. According to the latter,
it 18 assumed that during.the unsteady motlon the foroes
at each instant colncide with those of a corresponding
steady motlon defined by the same geometric parameters
€lving the position of the body and its tranmslational and
angular velooities. The values of the forces determined
by the statlonary forces hypothesls in some lnstances &if-
fer consilderadbly from thelr actual values in the unsteady
motilon. :

Our central problem is to study the relations between
the forces obtalned according to the statlonary hypothesis
and other assumptions and the actual valuee of these forces.
Our work constitutes an application to the planing problem
of the methods and results of the theory of unsteady flow
about a wing. .In addition, we shall attempt to generalize
and sinplify the methods consldrerd and ‘present them 1n a
form where they may be convenliently used for study and for
practical applications,

II. FORMULATION OF THE PLANING PROBLEM
AND ITS RELATION TO THE PROBLEM OF A THIN WING
i ¥We shall consider the maln part.of the:flow,; where
the water moves continuously. The flow will possess an

infinite velooclty at the edges of the planing surface, where
a thin spray ies thrown off.
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" We Bhall determine the

) otlion of the fluid on the
basgis of the following 'as

ptiones - - - ---
*l, Ag shown by expbriment, there 1s no spray sepa-
rating at the trailing edge at large plening speeds. _The
water, in thls case, /flowse 0off smoothly tangent to the
bottom. We shall cofrrespondingly require that the veloc=
1ty of the fluid at e trailing edge be finlte.

2. Analogous to vhat is usually assumed in the the-
ory of a - thin wing when formulating the flow conditions
and in the theory of waves of small amplitude, the: bound-
"ary conditions for the determination of the potential
flow on the surface of the water and at the bottom, we:
shall transfer along a vertical to the horisontal surface
coinciding with the undisturbed water level. ¥We shall
thus reduce:the problem to that of the determination of
the potentlal flow of the fluid at the lower portion of
the half space bounded by the horizontal plane. This ap-
proximation clearly doee not - hold true in the region of
fornatlon of the spray and at the epray 1tself. The mo-
tion of the water 1n the spray does not, however, have
any appreciable effect on the dlsturbances of the main
mags of fluld by which disturbances, the chief terms of
the water reaction, are determined. Without too great an
error, it 1s permissible to neglect the spray. It may be
shown that at emall angles of attack B the thickness of
the spray and the momentum of the water thrown off 1in the
spray ln a unlt of time are of the order of B2 (reference
1). In what followe, we shall assume that B 1is very
small and sheall neglect small quantities of the order of
B3 (references 4 and 5).

3. In the dynamical boundary condition on the free
surface, we shall neglect the weight of the water and the
squaree of the absolute velocities of the water. It may
be shown that on the free surface everywhere, with the
"exception of the small reglon at the edges whore the spray
1s formed, the magnitude of the abasoclute velocity v 1is
of the order of P and therefore v3 ~p23, The assumption
of large planing velocities in- the horisontal direction
Justlflies the neglect of the weight of the water.

¥e shall seée below that the assumptions enumerated .
above .ilmmediately reduce the. planing probdlem to that of
the notlion of a wing. For a steady planing motlion, as we
have seen in the preceding paragreph, such a description
corresponds to actual physical laws. For the unsteady mo-
tion, this method of formulating the problem when applied
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to the wing leads to theoretical conclusions that show
good agreement with test results. .

With the aid of the assumptions enumerated above,
it 1e not difficult to formulate mathematically the
boundary condltions for the determination of the unsteady
motion of the fluid.

Let us consider the two-dimensional problem. In the
plane of motion the wetted portion of the bottom profile
is represented by the curved segment MI!N! (fig. 2). We
shall study the case where the curve MI!N! Adiffers
slightly, in the sense indicated below, from its projec-
tion MN on the undisturbed surface.

Let some point O, on the initial water level be
the origin of a fixed system of coordinates. The point
0, - the center of MN, we shall take as the origln of
the movable system of covrdinates Oxy, the .y axis bde~-
ing directed verticelly upward and th x axis horizon=
‘tal,. ! !

We shall denote by o(x, y, t) the velocity poten=-
tial of the absolute motion of the fluld. Referring the
boundary conditions to the x axis, we shall have along
MN the condition :

%"Vn | ()

where v, is the normal component of the velocity of the
bottomn. The dependence of v, on x and on the time ¢
is deternined by the geometrlic and kinematic charactoris-
tice of the rlaning surface. Let y = f(x) ©be'the equa-
tion of the curve M!'N'! for some position of the bottom.
¥We shall 1linmit ourselves 'to the case where f£(x) and
£'(x) are small., After an infinitesinal displacement of
.the botton, we shall Lave for dy/dx, to an accuracy of
the second order of smallness: S

2 = + f!
adx ° g (x)

where B 1s tlo angle of rotation. If ¢ and v are,
respectively, the horizontal and vertical components of
the "velocity of point M' and. w5 the anguylar veloclty
of the bottom, we may write for vy '
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. . d-
Vy.m - v =ufa + + 0 =L
S e

=Y -8 - o L L ] - . . ——

or
Vn = =(v + wa) ~wx + of + of'(x) = v; ~wx + cf¥(x) (2)

where
v, = =(v + wa) + cB
I

For a plate fbrming an angle 'B with the horizohtal.
we obtain .
_ Vy = V; - WX (2a)
If the profile . M!N! wundergoes bending, then f!
is a function not only of x dut.also of the time t.
In this case, on the right-hand side of formula (2), it

is necessary to add the normal component of the veloclty
due to ?he motion of deformation.

Since the fluid 18 at rest at 1nf1nity. the Lagrange
integral on the free surface gilves: )

op(a,t) 1
-—5;———-+ 5 v2 + gy =0

where g 18 the acceleration of gravity, and o 18 a
coordinate in the fixed system of axes (fig. 2). Disesard-

ing the terms gy and -% v3 4in accordance with assumption

3, we obtain

a@(aut)
ot

= 0 ' . (4)

Thus, on the free surface ¢ maintaing a constant value
with respect to time although 1t may differ in value from
point ‘to Polnt. We shall assume thet the motion began
from the state of rest and conslidering the inltial value
of ® to be zero, we have everywhere on the free surface,
over which the body has not passad, the condition

P = 0 . (4&)
We shall denote by § :the path of the plaiing body

on the water surface conslsting of the fred portion and
the portion in contact with the dottom at any given in-
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stant. On- the free portion of the surface §, the func-
tion ®(a) 18 determined by the character of the planing
and may be found from the condition that the velocity of
the fluld at N 1is finite.

The potential of the unsteady motion of the fluild at
each given 1nstant may be considered as arilsing from the
inpact of a system of impulses pi(a) = —-pp(a) distridut-
ed over the surfaces. At a succeeding tinme instant, this
surface will be S!' > § and the system of impulses will
be Pt' where, on the_ free portion of the surface 8§,

. Py = Py

The potential function w(z) =@ + ¥ may be extend-
ed to the upper half plahe on the baslis of the Schwarsz
principle of syhmetry salnce to the right of N on the Ox
axis, @ =-0¢ Let B (fig. 2) be the position of the
point M when the unsteady motlon is set up., We then ob-
tain the extended functlon w(z), which is holomorphic
throughout the plane BN or AN .(the point A denotes
-») 1f the circulation about an infinitely removed con-
tour is different from zero, and

e(x,y) = -9 (x - 7)
V(x,y) = ¥(x =~ y)

. Therefore, &t the separating edges above and below, the
value of @ " is at each instant the same in magnitude bdut
,opposite in sign: .

P(C) = - p(Cy)

It therefore follows that for the motion of an infinite
fluid determined by the function w(s) the line BN 1is

a line of discontinulty of the horizontal component of .
the velocity of the fluid. The vertical component of the
veloc ity .changes contfnuously in passing through BN. The
horizontal components above and below aroc ‘equal in nagni-
tude dut oppositely directed. Denoting the discontinulty
in .the velocity by ¥Y(a), we have

aep 4 d
Y(a) = o= (02) - o= (C) = 3 ﬁ (c1) (5)

and . Y(a) mnay be considered as the density of the vor~
tices distributed along BM,
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_ Let I'(a) denote ghe circulation taken about some
closed path. L. .(fig..R2) .autting AN at.point O 4in the
direction shown on the sketch..

Obviously
I‘(G) = -2@(01)
whence , '
a .
g = ~V(a) ~ (8)

I'(a,) 1s the circulation about MN at the instant con~
seidered. If the circulation adbout MN 1s known as a

function of time, then, conslidering the various polnts on
AM as the poslitions of point M at various instants of

the motion
a = ag + u/a cdt (7)
t

o

and we may compute %Y(a) by the formula

Y(a) = - 2L 4t 14T (8)
dt da c dt

) Conditions (1), (4), and (4a) and also the extension
of the flow in the upper helf reglon apply in the same
form also to the three~dimensional problem with the dif-
fereonce only that the discontinulty of the horiszontal com-
ponent of the velocity béhind the planing body depends in
this case not only on the longitudinal coordinate, but
also on the coordlnate in the transverse direction.

The wetted length M!N' w MN = 3a in unsteady plan=~
ing may change with time. The wetted length as a functlon
of the time depends very nuch on the form and-dimensions
of the bottom, on the amount of immersion, the angle of
attack, and also on the welght of the water., It 1is im~-
portant to note that the wetted length cannot be gliven as
& paramster of the motion but 1s determined in the process
of solutlion of the hydrodynamical problem.

If & 1s considered as constant, then the problem
we have formulated coincldes exactly with that of the
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determination of the unsteady motion of an infinite fluid
about the thin profile M'N! with a surface of disconti-
nulty separating at the trailling edge. The problem of

the motion of a flat plate with a line of discontinulty

hae thus been formulated by Wagner (reference 6)and that of tht
oscillations set up has been considersd by Glauvert (ref-
erence 7) and Keldysh and Lavrentiev (reference 8). We
shall generalize this problem, extending 1t to the case of
& variable a and a thin profile of any form. Morsover,
we shall investigatve in greater detail the physical char-
acter of the hydrodynemlec forces and shall study the forces
in the unsteady planing motion.

III. DETERMINATION OF THE FLUID FLOW

To determine the potential function w(z,t) of the
fluid, we have, on the basis of the assumptions made, the
following conditions (for notation, see fig. 2):

1) Outside the segment BN

aw _ 4 - iy

is a holomorphic arnd single-valued functlon
of =. ’

2) At infinity, the fluid is at rest but the circu~-
lation about a contour L, eanveloplng BN 1is
in general different from zero and 1s equal to
I'o = const. Expressed otherwise, the series
development of dw/dz near an infinitely re-
moved polnt has the followlng form:

3) Along MN on both sidos

Se _ .
oy Vn

and %? is continuous along 3BM.

4) Along 3BM, .we have a Adiscontinuity in the hori-
zontal component of the velocity:
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ap 4o
i W) =g (0)) - 75 ()
The function %Y(a) should be determined 80 that
at point M the velocity of the fluid is
always finite.

Let us consider tne function

P(z) = £2 - a® %%

Let us take the branch of #z° - a®, which for

x>a>0 glves +/x? - a®, fThen in approaching MN from
above

Vs? - e — 4+ 1 Ja? ~ x?

and in approaching MY from below

Along &M ve..have -JJxa - aq .

The functioh TF(z) 1s holonorphic.and single-valued
"everywhere outsilde ‘the segment BN. 'Néar an infinitely
renoved point the series below holdse true. namely:

. T
F(z) = —o + ia-'F . .-l'
a2ml z

. . Applying the formula of Cauchy to the function F(z),
we may wrilte ~ ° |

ey oo L pIDEL 1 poR(hat
g c-o2nd [ te-z.  2mwi (-2
. . Ll - La .

]

where the integration for both integrqla is to be performed
in the counterclockwlise dlrection. . .

contracting the path L; to BN  _and expanding path

to infinlty,"” we obtain from the above expansion for
I?z) at infinity" . i

F(z) = L'[Ir(xb + 10) =~ ]‘(zg - 10) dx +_£'_o_

2mi Xo - & : ° " 2mi
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Denoting by wu,; - 1v, and mug - iv, the values of dw/dsz
in approaching BN from above and below, we have
Ug = =u,
and along MN
Vg =V, = =V

We thus find wlong MN

- 2vn(z°)4/a3 - x,8

F(x, + 10) - F(x, - 10)

and along BM

F(x, + 10) = F(xonf 10) = 2u: Jzoa - a2 = Y(a) Jxoa - a3

Henco:
d 1l 2v a - X
d—w-_- - [ = ° dz°+
z P
211'1 - A _-a
Y r
(a) v x . o
} - a2 -z ami/z? - a2

(1)
Between a and x5, there 1s the relation
Xg = = Q1= &

The first term of formuls (1) glves the velocity field of
the irrotational motion of the fluid at a given distridbu-
tion of the normal velocities along MN. The second term
glves the veloclty field due to the vortices epringing
from the traliling edge of the plate and distrlduted along
BM, 1in the presence of the flxed plate MN, with density
Y(a). ¥Finally, the third term gives the pure motion of
circulation about the fixad plate.

In equation (1) replacing v, by v, - Wxo + of!(xy)
in accordance with formule (2), sectionII, and performing
the integratlon of the firset integral, we obtain
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A e, (1 - .—...._...E..mh)q- L (= = 2 - a®)"
Ve A

N a +af|(xo)dﬁa - X2
nw,a - 0@ f Z - Xo
-a

@1
+ /—1 — f Wadwzo® = 0% 4o s To (2)
amive® - a?® Jg ¥o = = mWg? - ad

whence
- a®) - %’-(z -a22 = aB)2 4

dxg -

w = lv,(z - /5%

+a
£f'(x0)1ln dxq
f Xo + 1/B3 = X0? ~ 5 =428 ~ a3

-8

d|e

Gy Xg = xoa - a2 - g =22 - a®
dx

l
+ — Y(a)ln
aﬂif xofm-z—za-aa
o . )
+ -211—01 1n(z + /2% - &%)? (3)

If the bottom has the form of a parabola, we may put

¥y = £f(x) = —ox3

wvhence
£f1(x) = =2ex

In that oase, we shall have
1(w + 2e0) (2 = /2% = -a3)3

i Gy~
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w(g) = 1vy (2 - Jz? - a2) - 1(u): 2§c? (2 - /23 -~ a3)? 4

1 T Xo = AfX02 = 82 = 3 ~ 32 = a® da +

+ — Y(a)ln

aml Xg + ¥xp® = 8% ~ 5 - /5% - a®

0

s g;%-ln(z + /22 - a%) (32)

Comparing these formulas with formulas (2) and (3),
we see that curving the bottom in the form of a parabola
is analogous to the rotation of a flat plate. (For a
flat plate we may put £!'(xgy) = 0.)

The condiltion that the velocilty be finite at point
M requlires that the coefficlent of

1

2nl /22 - a3

in the expression for dw/dz become zero whén Z = =8,
Thus, :

+a a —_—
. J/a vy Jad - X2 . Y Y(a) /xR - a®

dag + I'yg =0

dXg
x°+a x°+a

o
or

+a Uy
a - Xg o - &
Ipb - 2 Vvp /[ ——dxg = Y(a) /——da
e + Xo Xo + &
-8 o

o)
We shall set

+ - .
L 1 £1(au) /l_udu= B (4)
' l +u
-1

er(x) = ) - ndy (%) "

n=3

so that if

then
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- 5; - E : t(ak + 151&,3,:_,_1 = SkAgy 1(21:-- 1).(2% - 3).,.5:3
k=1 _ . 2%.xy

We then have

+a ' L
[a = x wa
[Tn Py x: dxo = 2me (v1 +-—§-+ cB, )= Snavy FB)
a

For a flat plate £; = 0 and vy 1is the normal ve- .
locity of the plate at a point whose distance 1s one-fourth
the wetted length from the trallling edge.

The conditlion that the velocity at point M be finite
in the notetion of (5) assumes the form }

2 2a +
Ty, = 3mavy =1/F V(G)~/, 210172 aa (8)

The above relatlon i1s an integral equation of the
Volterra type of the first kind. For given functions
vg{a,) and a(a,), 1t is possidle with the ald of (6)
to deternine Y(a} For a thin wing, the function vg(e,)
completely determines the strength .of the vortices spring-
ing from the trailing edge in an unsteady motion of trans-—
lation with small angle of attack.

For a steady planing motlon with constant veloclty cqg,.
we have W= ¥ = 0; a = a5 = const.

Equation (6) in thie case gives:
s I‘o = aﬁaov'ao = aT’ﬂo(ﬁo + Bl) Co

Consldering the unsteady motion as a dlsturbance fronm
the state of steady motion. we may write equation (6) thus:

- 2nA(avy) -f "Y(a.-) 38 * oy - a'da. (7)

. Qo
where

A(ava) = avy = agVao
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~ FTor a rigid wing profile particularly, o ‘and B,
are independent of time. If, 1in addition, the horisontal
velocity at -the tralling edge 1s constant: ¢ = const.,
then

- 2nA(avy) = -2na [v +EU§-- c(p - ﬂo)]

Hence in this case the lntensity of the trailing vortices
does not depend on the wing profile.

. At o = a, the kernel of equation (7) becomes infi-
nite. To remove this difficulty, we shall multiply both

sldes of (7) by 1
. . u - 3
a; from o, to u.

and integrate wlth respect to

We then obdtailn o

u u 1
o z -3 Alavy)da - [ a y 28 + 0; - a
(u) / ————Lm_; a.;_a () Y p— da
0 o :

Changing the order of integration according to the
Dirichlet formula, we find
u

o (u) =[ ¥ (a)E(u,a)da (8)
(o]

¥

where

- a.l)(a.,_ - G)

. u '
H + -
K(ula) = [ / 28 (.7-1 < dccl &=
Jo V(v
+11/a

f /2a. + -“—-'2'—92 (1 - sin\y)d\v
~T1/3

(a changé in the varlables has been nade here

u + u -
oy = za'— 208111‘1’)

The kernsl K(u,a) 1s finite and, 1f & 1s constant, de~-
pends only on u - a and nmay be expressed by elliptic
functions. The integral oquation (8) may be solved by the
method of successive approximations.
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. ‘For a motlon for which. the changos in &a and- vy nma
“be” condidered aw, tnfin}tasinal. we.-obtain from equation (7),
limiting ourselvea to values of the firat ordor of unall~
.noess, . o . .
.. . . ] al ',. , . . -'-
- 2n8(avy) =f v(a) fRBo r 23 2 4, (9)
- a

G-I-G

L

0.

For a constant. vaiue of. a, equation, (9) coindildes
with equation (7). Denoting . L.

Q,,

f ¥(a) da = = [P (a,) = To] & <It{a,):
(04

. 0 . . .
anrd setting ag + o, = @ = ags, we may roduce oquation (9)
to the fornm: . .

1
2nd(avy)=T''(a,)=a, U/q Y(a,+ag

Qy—~Co

] ds (10)

1+

If, after a sufficientfy large time interval, the oscllla-

tions tond to approech a certaln stoady oscillating state,

we nay linmlt ourselves..to.a study of this state. For

stoady osclllations we may put ag = = Egquation (10)

then essumes the forn
~ o——

~ 2né(avy) = I'*(a,) = ag Y(ay + ag = as)Lv/gé%-l] das (11)

J

[--]

In equation (10) we may in gonoral consider op = =,
1f 8(avy) 18 such that for o< a.; 8(avg) = 0., Under
this condition equation (11) holds grue for an arditrary
motlon.

iv. THR PROBLEH OF LANDING ON THE STHP

T

Slde by ailde with the problem of steady planing, 1t
18 not difficult ¢to obtain a conplete solution of the
+ problem-of the landing with constant velooity of a flat
step on undisturbed.water: Tho solution- -of thie.prodlenm
is rendered simple by the fact that during the inmersion
with constant velocity 1n a welghtless liquid of a wedge,
in the case of the. two-ddmonsional. problen, or .of & cone=-
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2 " . e . ———

shabed body, In the case of the three-=dimenslonal prodlen,

"~ the motions. of the fluld .at different time instants are

dynamnically similar. Thé problem of the landing oh-a step
with constant veloolty has been consldered in the work of
Wagner (reference 1). We shall consider the problem once
more here and add a few simple results.

Let us consider a step which settles with constant ve-~
locity ¢ on an undisturbed water surface. ¥We shall denote
by B .(fig. 3) the angle the bottom makes with the horizon-
tal and by Kk the angle between the horizoantal and the
landing velocity. We shall assume the angles § and K
both to be very pmall,

Since the.mbtions of the fluld et various instants

are dynanically similer, the wetted length 2a and the
circulation along it are proportional to time. Hence

= const

2
n
]

o |-

215

and therefore equation (7), section III, gives

71 .
-2na.va='7f/2°‘+"'1'“da. (1)
Gy, = &

0 L

Cb1+a.

" ——

= 8, = const > 1,. and replac=-

Setting a = au,
' a

ing v, by c¢(B + k), we find

8o~1

’ ' -2n'c(a+n)=vf /8o + L = u 4y
' . Bg = 1 - u
o
whence
Y o - 2me(p + K ) _ (2)
Vsoa - 1+ 1n(s, + #8,® - 1)

' The ninus sign shows that the horizontal velocity be-
hind the step on the surface of the water 1s dlrected to-
ward the . left. *

. With the ald of- fbnmula (2), section III, it 1s easy
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to detormine the verticel component of the weloclty of

> * the-fluid pertdoles .on~the  x:.axls. 'Sgtting x/a = 8,

we obtain after a simple computation

v'= (B + &) [ X (Jgoa_l i T
Jsoa-1+-1n(sp+ N8 o8=1) .-

- 12559 ‘|-' l - \/BB -1 Jagcs-l ) - 1] (3)
8 + 8q s

Using this value for the vertical volocity, it 1s not dif-
flcult to compute the rise n of the water at any polnt
with coordinate a* = const

We have!
a* = a, + & + x
Since
ay = ¢t o= —1
8 =1
o
and
X = sa sct
By = 1l
therefore
8.+ 8
- a* = 02—\ ¢t
8 = 1
whence

=a."' (so - 1)
c(sg + 8)

a*(s, = 1)
c(sg + 8)2

dt = = dd

;_Thua.'{o:_the rise My, W find ths formula
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z o Jo*(sp - 1) vds
" Uéj T o aZT (sg + 8)2 )

At the forward edge x =a, 8 = 1, and ao* = (8g + 1l)a,
so that here

1

N = - a(sg® - 1)J/" vds (4)

c o (Bg + s)?

Substituting v from (3) and performing the integration,

we find
8g In(eg +48g3 = 1) =Wsy2 =1
In(s, + W8 3 - 1) + v 3 ~ 1

(2]

(5)

n=a(f +k)

On the other hand, from geomatric conslderatlions it follows
that at the forward edge

n = a[28 ~(ay =~ 1) k] (6)

Bquating (5) and (6), we obtain the equation for the de=-
tormination of 8, as a functien of B/u.

If 1' = 2a 18 the wetted length and 1 is the
portion of the wetted length below the water level, then

_%l = 288 = —2_ £ (7)

(ao ~ l)ax 8o ~ 1 K

On figure 4 1s plotted the curve showing how 11!/l wvaries
with B/k 1in accordance with formula (7). When B/ —> o,
we have 1'/1 —> . It-1is worth noting that in formula

(7) ¢ does not enter and therefore the ratio 1!/1 does
not depend on the landing velocity.

V. SOLUTION OF THE INTEGRAL EQUATION FOR STEADY OSCILLATIONS

Wo shall now consider the solution of the integral
equation

2ng (avy) = P'(a;):aoy/ﬂLY(al+'ho-aos)[ 8 + i - 1] ds (1)



N.A.C.A. ‘Pechnical Hemorandun. -Ko. 942 23

for steady oscillations about a- certain steady planing
"motion, Letv * } ;

8(avy) = gAeikt = Ay cos (kt +¢)

where A4 =,Aoei‘: k 1s the frequency of the osoiliation-.

We shall consider small oscillations, such that the
amplitude A, &and the amplitude of the variations in the
horiszontal veloclty of the trailing edge are very small,
Wo shall: assume the following law of motion for the point
M: —

Lot . a = Cgt + a, -

whers -E: is a function of time and assumes only small
values. To an accuracy of the second order of smallness,
we obtaln ' ka,

1—u8

8(avy) = RAe Co

The solutioi of equation (1) is found by setting

o
I't(a,) = RDe o
whence ' _
, Y¥(a) = —'.%'a—' - 2 [— -i-f ne'ic—og];. '(_z)

Denoting. the abstract number kaolcb by K, - we may write

-

"y - : kg
Y(ay + 8o - aos) = - BD il o e Co o M " H®

' Substituting the expressions for I‘(d;) and
?(m; + ag - aos) 1n equation (1). discarding the symbol
1kaa
R and dividing by the comnon factor e °0 y W8 obtair

: 1 L ..
) i -1 + 1. -
zna-n::-ipne“'fe ""'[ e -1]&5 (3)
(-]

The integral on thé;ri@htéhand side may be expressed dy a

Bessel function, - For this purpose, we shall make use of
the integral representation of the Hankel functions in the
Polsson form (reference ¢9),
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Hx(>1)(>\) =Xp fe"". (2 - w2 ® ay

-
where

= 2D

£,
mt Xy = 1

A=p+ ios B> 0 Xo =

fof the path of integration, we may take any eurve situ-
ated 1n the first quadrant of the w plane. BReplacing

id

v by . Re and assumling that o > 0, we have

. m/3 L
- p-
1im fe R(O'coso+psin6)+in(pcoso-0'sin6)(1 - w3) % Jvdd= 0

P—> >

and therefore

(L-P)'"i P_%.

© EZTO) = xge MEtan T (@

Using the above formula, we find

fe’“" [ frr1 ]as - .2.[13( Yy« n‘”m]- 21-? (5)

e =1

The above relation has been derived on the assumption that
>0 Dbut 1t 1s obviously true also for O = 0. Substi-
tuting ¢ = 0 and replagcing 1 by -1, we find

1 r -1
f e[ AEL L ae = 30a () + 20000 4 ﬂ:

Subatituting the value of the above integral in equation
(3), we obtain
(s

3mA = - % 1pelk [111((,’)(;;) + H) )(p.)]D
whence .
: ge~1k 3

B ES (W) < 180 (W) (8

D =
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For large:.valwe of -w, o replacing the Hankel functiona by
thelr asymptotic- expreaeions.=we~find -

B mi
D= A ’..21_1 e-T
. _p - .,

Hence
’ m D=0 b
by o4
For small values of . 4, we obtain
: " . 4
: 4 Ae~ik
L =3 2y, 2
- . « —— Sptm—
5 SR + ' + in o
where
. Y = 1.781072
whence '

lim D = 2mA
! - 0

This value of D may be found if the clrculation
about MN 1s dotormined in the same manner as 1in the
caege of stoady planing and in the wing theory as in the
theory of motlon with constant circulatlon.

Since the integral eguation 1s linear, 1t 1s possidle
with the aid of a Fourier sories to obtain the esolution
for any perlodic law of oscillation, If

©
: ikna
| 8(avy) = R E Ana Co
then . . © ' n=l lkna : i

rMa) = B = Age ™ %o G0
Tk 4 (882 (op) - iH(l"')(nu-)]

By an analogous method with the aild of a Fourier in-
tegrel may be found the solution of integral equation (1)
et an arbitrary value of 8(avg), provided

|5(ava)| da

remalns finite 1n "the region of a considered.
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VIi. HYDRODYRAMIC FORCES IN UNSTEADY PLANING
OR UBSTEADY WING MOTION

We shall now establish general formulas for the hydro-
dynamic forces wlith the ald of the methods given above for
the determinatlion of the flow. For simplicity, we shall
limlt our study to the case where the bottom 1ls of para-
bolic form.

Let X and Y denote respectively the horizontal
and vertical component and M +the moment about the center
of the wetted length of the hydrodynamic force acting on a
unit width of the planing surface. The pressure on the
bottom we shall determine with the ald of the Lagrange 1in-

tegral. Neglecting the squares of the value of the abso-~
Iute velocity of the fluld, we may write

f(p-po)dx=-pf 99—(3“—1;’1)-“ (1)

+
/ (p - po)—dx = - BY + pf f'(::)M ax  (2)
—a

[ (p - pPolxdx = -pf 9%?31 dx (3)

" In the case under consideration, f!'(x) = -2ex, so
that

I=-BY+ 2e0M (1)

It remains to compute Y arnd M. The variadbles «a
and x are connected by the relation.

. t :
a =X +L/n (c + EE) at + const
at
to
and therefore

opla,t) _ O9(x,t) _ O(x,t) da
ot - . ot ax \° T at (4)
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Notling that

o (+a) - Cp(-é) ~ePlep)-~--To -+ P

] 2
where ay
= - /1 Y(a)da
Ja
we obtaln . 0

a1 +8
(e s ) Rsdeb 8) [ oo [ 2t (o
. Yo

The value of 29%%'1:—) nay be easlilly found, using

formula (3a), section III:

3p(x,t) ow(sz,t) dvw /"  awi 1
—————ee——— O R ———————tttete @R gma  e—— aa - xa + _J. =3 < aa_ - xa
ot - ot dt dat 2

a
w,ax Y¥(a)(xxy + 2a2) da
- E[ avy _ 1 + 1l (a) ( 2 ) ] (6)
d% | Va2 ~ x® 24/82-x3 2mwa J/a2 - x3 «/103— as

)
wvhere W, denotes W + 2ec.

Substituting now_

(o1} Ly
o

from (6) in formula (5) and not=-
ing that '

+a ta

. -
[ Q/ a® - x3 dx = II.%.; . L/ _d'—x_. = T3
Lg . —a _/aa ~ <2

v 3-- 3 c———————
/ T oax = - m(xo + Vxo2 = a3);
J.a
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we find

_ 1 da) pna® dw. aa
Y '§P(°+TF To + ) —Ldt+p1'ra.v1 it

e !
xoY(a)da pa da Y(a) da

+ p(c + da) 1 + —_— — (?)
)2 [raoas 28| Joaoes
Qo Qo
To eimplify thie formula, we shall make use of integral
equation (6), section III, from which, noting that
|I°|>a, xo<°
we have
a, a, Ca
xg¥(a)da _ _ Y () /x5 - & i +a Y(a) da
—— Vi, v s T
o VX = a a a, o - 8
a
Y(a) da

= 2ma vg = I'y + & e

/v 3 o o3
a, ZXo a
Using the above equation, we obtalin for the 1lift force the
final formula '

a a2 da
Y = E;-(E%;— v1> + pma (c + 3% )V

$1 v(a) da
+%E(c+2%%>l[z=%=:—a—; (11)
[¢]
o]

For steady planing

Y =0; a = const; v, = vy = cf = const

n

and in this case, formula (II) gives
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!o = prac vy = prac? B *

This 18 the well=-known formula of 'agner for the 1ift
force 1n planing.

-In studying the motion of the fluid during the in-
nersion of a slightly inclined ¥V botton, Wagner identifles
each of 1ite instantaneous conditions of motlon with that
due to the inpact of a plate of width 2a which, after in-
pact, has received a velocity equal to that of the sinking
bottom at the instant of time considered. He thus obtalns
for the 1ift the formula .

n, = & (25 )

This assumption corresponds in our considerations to the
substitution 1in formula (7) of the values ¢ = 0; ¥ = 03
Po = 0; after which 1% agrees with the Wagner fornula.

Ve may note that this is the first term on the right-~-hand
side of formula (II). This term takes account of the ef-
fect of tho so-called added mass. The term

p-rra.(c + %%)va glves the 1lift force, which may de ob=-
tained on the "stationary hypothesis®™ and fiﬁally the last
term takes into account the effect of the horizontal veloc-
ities of the fluid on the free surface, which velocitiea

are 'absent in steady planing.

We shall nov compute the magnitude of the moment. On
the basis of (3) and (4), we have

u,pf[bsg_q(“se -xEn e (e

Prom formula (aa). section III, we find .

x _2. = vl___x___ + Y fa? - 2x®)x + ox
a? - x2 2 a® - x® 2n/a® - x®
Y(a)x //xo2 - a2
+ . a
2" f (Io - I)Jaa - x3 * (9)
Co .

*Independently of Wagner and on the basls of other consider-
ations, an analogous formula was established dy K. A. Sokolov
(reference 1¢) for the Adynam fe component of the 1lift in the
case of steady planing.
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Substituting in (8) the value of. xgg from (9) and
the value of égéf+ﬁl from (7), and noting that

2t 2 x3ax 2
f x2,/a3 -xadz—-’-?-a—.f 7:?.=_;.=ng_
-a

- x
ve obtain i
H:'-E__.ﬂ -E-—-— 'L—'V<c+—— B___g-_a_ro
16 at 2 4 4t
- pa da / Y(a)dm
T i f‘Y(G) da + £2- c+ )/ m

Co
(10)

Since

Lo 2 - &
Fﬁ .
L/p Y(a) ;:—:—: da = I'y - 2mavy = I'g - anav, —'ﬂ33w1
a . . ]

formula (10) is considerably aimplified to

. a.l' .
. 4 2
N - £re dw, pra .1(c+29—) P——(c+ [} Yalaa (111)
16 dt 2 at a6/h frgs - at

.ﬁor a flat plate, w; 18 siﬁply the angular rotational
velocity w and for a plate bent into the form of an arc

of a parabola ¥y = -ox?,

W, = W + 260

1

Fornulas (II). end (III) were derived for the cass of
planing. By eimply doubling the right-hand sides, we obtain
the fornulas for the 1lift and moment of a thin wing with
varleble chord in unsteady or non-uniform motion with sepa-
ration of a llne of discontinuity of veloocity.

The values of ¢ and %% above and below are, in

fact, equal in ﬁagnitude but opposite in slign. Hence, the
increase in pressure below and the decrease 1n pressure

_above, due to —L, are exactly equalt For thils reason, to

ot

-
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obtain the forece acting on the wing, it 1s necessary to
doudble the foroces obtained for “the planing metlon, -We ..
may note further that for the case of a wing the term con-
taining v2 1n the formula for the pressurs 1s not neces-
sarily neglected, since the value of the absolute velocilty
of the fluld abdove and below are exactly equal to each
other, so that this term does not represent a pressure
Jump in passing through 'MN. The term with v in the
fornula for the pressure on a wing is eguivalent to the
appearance of suction forces directed to the right at the
sharp leading edge. This concentrated force modifles the
hydrodynamlc action of the.fluld .as a result of the rare-
faction which dactually takes place at the rounded leading
edge of a wing., To obtain the horlzontal tcomponent of the
hydrodynemic force acting on the wing, 1t 1s necessary to
doudble the horizontal conponent that acts in planing and
add to it the suction force. ’

We shall derote Py P the suction forca at the lead-
ing edge of a wing. The value of P 1is readily computed
since

The integration 1s performed in the counterclockwise
direction about an infinitely small circle ¢ with center

at pdint Z = a. At this point - %§_>a has a simple

pole. Excluding the pole 2z = a, we obtaln

a
. dw
P = -pr lim (2 = a) <ET')

Using the expression-for %E from (2), section III, we fina

+a A —
Wa? - 2
P=ﬂ[vlav%i+gf f'(xo) & xo 'dxo

B-Io

. -]
- Y(a) J: - a? Ty
2“ f o_. Py da + -E'I‘.]

On the basis of equation (6), section III, in the notation
of (58), (4), section III, we have
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Q

//’ V(G)JIQ & Y(a) da
3" ,/xoa - a®

Gy
1 - Xo = &8
- . — QO
= [ Y /i
a

o
a 7(a-) da To
B'l—'l'-‘/ = B—E+a(v1+2+cﬂl)
X - 8
ao 0o
and
+a +a

c £1(xo) Va2 - x4% 2ac £1(x,)dx,

- Xo =

kL -8 & = Xg aa_xoa

Therefore:

+a '( )d 1 1 _( ) a
o £1(xo)dxg Y(a) da }
P =2 + = —_— IV
prra "1 m [ Jor - 27 oM R ()
%o

partlculerly for a motion with constant circulation
+a
o £f1(xo)dxo ]2
P = 2pma v1+—f7==-_
ﬂ 3 3
-a a - Xp

Wo shall bring out more in detall the significance of each
of the compononts of tho 1ift deternined by formula (II).

For simplicity, we shall conslider the plate as flat.
We then have for the unsteady planing
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a (¥)
pa &a) * Y(a) da >
Y. = —(c + 3—
: 3 2 at 3 a?
U-o 0 ,
a® aw Eﬂaa
Ml o - 16 E + P 71(0 + 2 dt) /

and for the unsteady motlon of 'a wing with a = codnst

dv
-} b | 1

1t 'Y".-l .= pﬂu dt

?a = 2pmacvg
o4

F R— _ :
—_ Y(a) da '
T35 = pac e (Va)
x 2 - aa "
o, ¥Y¥o . f_
- - 4 . o
W, = - BUe_ au pna3v; o
8 dt

ay
P 2 . 1 3 Y(a) da
= —— S —————————
pra | vy > — ]
. v Xq
Ug

The forces Y,, Yg, &and Y; are perpendicular to the
_plate (fig. 5), Y1 and Y5 Ybeing applied at the center
and Ty at a dlstance from the leading edge egual to one-
fourth the wetted length,

If we consider the classical problem of tha motion
of a plate of variable width 2a within an inflnite fluid
moving as a potential and continuous flow everywhere except
at the edge of the plate, then the general hydrodynanic re-
action is reduced to suction forces at the edgea. the foroce
Y1 and the monmont

— 4 )
‘ — =2 - we———
“.. 1 2 M': ‘ at ( UD + pma“vy {c + at
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vhich we obtain by setting in formula (10) I'yj =¥ =0
and doubling the right-hand side, The force 7Y, and the

moment M!; appear as a result of the so-called addi-
tional virtual masses., TFor a constant width 2a

= =
M'y, = M, = 3M,

Thus, the force Y,  and the moment iTl do not depend
on the circulation I'y and on the vortices springing from
the tralling edge.

If we conslder a notion with conmstant circulation for
which motion the condition of finlteness of the veloclty
at point M 1s satisfied, we obtain the component Y, + ¥,

and the moment H; (reference 1l1).

The force Y, or Ts depends on the strength and

poslitions of the separating vortices. As the steady con~-
ditlon 1s approached

The expression for Ya for unsteady motion coincides with
the expression for the entire component Y for steady mo-
tion with constant translational and angular veIocities.
We have, in fact,

Y, = 2npacvy (11)
and, on the other hand, for steady motion, if

Vg = const; w = const

we)have (see work of L. I. Sedov (roferemce 11) pp. 30 and
31

Y = pcl
and
I' = 2mavg
that 1s:
. Y n'%ﬁpacva : (12)

The right~had sides of formulas (11) and (12) agree
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not only in outward form but. in actual signifilocance as
"wéll, if by ¢ 'and vg. -in formuls.(l2) we underastand
the variable velocities for the given unsteady motion.
Thus, Y; 4is that value which we should obtain for the
entire component ¥ if we were to compute it for the un=-
steady motion acocording to the rules which hold for
stoady motion, 1l.e., if we assumed the stationary hypoth-
esls,

Tor ‘accelerated motion, if
then Y(a) < 0

1{.e., the water breoaks away behind at the step. In thls

case, for Ia&%l <c

always. HDence, the llft force obtalned on the stationary
hypothesis wlith the virtual additional mass effeoct taken
into account has a value too large. In the case of re-
tarded motion, the reverse holds. true. HIere we are con-
fronted with an lnertla phenomenon for the 1lift forces.

Y, <o

The physical explanation glven above for the forces
in formula (V) may bo useful in taking account of the fi~
niteness of the span of a planing body. Thus, for example,
the componment Y; for bodles of various shapes may be ob~
talned theoretically as well as experimentally.

VII. FORCES ACTING IN LANDING ON THE STEP

We shall determine the hydrodynamic forces actling on
the step os it 1g immersed in the liquid with constant
veloclty.  In the notatlion of section IV, we have:

W= 03 vy = vy =c(p + k)

and-
2me (B + K)

V8,2 = 1 + 1n(sy + /8,® = 1)

Tormnulas (V) now bacome

¥ = =
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f e femds ot
et b e i A
' Y, = prna (9.+ it O(B + k)
. YS = p % (c + 2 ) /’ =
V - &

pas ga
M; = c(f + k) (c + 3 33

Bearing in mind that '

a - c

[V

Ei—:—i: 8.° = ct' a =—-—9—L—I —— T e —
a o %y % ! "Bg = 1' dt 85 = 1
- and .. .. . :
/ﬂ W =2 ) -a = la(so + #ag® = 1)
/o _(d.-:aﬁli &)? - a ‘
we .qbtain .
. . . .<1 + g) . ( )
; ) Y,. = prnc2h (1
1 P ~ 1)3 '
.., (1+_ )
Y, = pnc®h (2
(s = 1)2 "o .

(1 + = ) l (8o + 1)1ln(sy + V5o° = 1) ] (3)
C 03 - 1.+ ln(so + J 1)

where h is the immersion of the tréiling edge, 1l.8.,
h = get
Combining equatione (1), (2), and (3), we find

Y = pmec®he
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ar g L

T o~ S

1+ %) (8g + 1) Vag? =1

- £) Lo ° (1)
(s, = 1)’[4%03 =14+ 1n(sg + 4&03 - 1)]

vhere

Yo have'further

a .
"1 = E (Yl + !a)

Thus, in landing on the atep with constant velocity the
general hydrodynamic reaction reduces itself to a single
force applied at a distance from the leading edge oqual
to one-fourth the wetted leongth (fig. 8).

Prom formula (4), it is clear that this force de-
pende essentially on the ratio PB/x. Figure 7 shows the
naturo of this dependence graphiocally. It ies interesting
to obeerve that the curve for € has a nminimum, a fact
which indicates the existonce of an optinum ratilo B/n
in landing.

The impact force conputed from formula (4) will ac-
tually be larger than the force applied at the step since
we consldered a flat bottom of infinite span. The finlte~
ness of the span and the presence of a V angle result in
a2 decreased water raanction.

In connection with the physicel explanation of the
hydrodynanic forces given in the preceding paragraph, 1t
18 interesting to compare with one another the values of
Y,, Ygy and Y5 for the case under consideration. Since
all these forces are proportional to time, thelr ratios
will be independent of time. For comparison, their varia-
tion with the parameter B/k -are shown graphically on
figure 8, the values Y,/k, Yy/k, and %;/k , where

pr(B + K)ot
(sg - 1)2

x =

being laid off on tho ordinate axis.
Trom formulas (1), (3).-und (3).

Yy

Y
U oE e
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(sg + 1) ln(ey + V8y® = 1)

Jsoa -1 #+ ln(ag + «/ta(,a - 1)

!J---
k

¥e sese that for small values of '%, Y; 1s comparable

with TY_; and in this case it 1s therefore incorrect %o
neglect to take into account the effect of the tangentlal
velocity of the water bohind the stop.

The limiting cases as E-—> o &and E ~—>»0 are
K

K
shown on figures 9 and .10, respectively. In the firet
caseé, wo have

1lin %f = lim 8o ~ 15.645; lim %f ~ =3,995
in tho second!

. Y, Y
— H S =
_1im ” 1l; lin 1? 1l

VIII, FORCES ACTING DURING THE STEADY OSCILLATION OF A WING*

Wo shall consider the magnitude of the hydrodynanic
forces durlng the steady harnonic oscillation of the wing.
¥Wherever nagnltudes appoar 1in complex form, 1t 1s to be
understood that only thelr real parts are considered.

Let the oscillations de of tho forn

8(avy) = Aelkt ang 8(av,) = Belk?t
where
4= a0t (f1+ €a)y B = Byol®2

A, and B, bYoing small values. In the case of the wing,
e = const.

Considering, for sinplicity, ¢ to be constant, we
find fromn formules (Va)

*The problem of the steady oscillations of a plate has bean
treated by other methods in the paper by Glauert (reference
7) and by Keldysh and Lavrentiev (reference 8).
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. o T3.=_pnatk301kt - . (1)

ret . ()

Ya - Tap = 2pﬂc'l.e

From formulas (2) and (6), section ¥V, we #ave:

1ag-in. oA
Y(a) = - 4ile e C (3)

a[Ega}(u) - 1H£al(u)]

Using the above and setting

Xop 2 @ - @, = & = -as

we find " | i
a'l .
Y. = ome o :-Y-(a.)da_ _  4pclde © 1 e-il-lvs
3 P f E"o'a - a2 [H(()a) (w) - 1Ega)(u)] Jor =3

- OO

The integral on the right-hand side 1is axpressed by Eankel

functions of the second kind. PFrom fornulas (4), section
V¥V, at p = 0, &and replacing 1 by =1, we obtaln

-1us
ds wi E(B)( )
J—-_f' T e H
_ZWe ghall furthermore denote
' (2) '
Ho  (u) =v(p)eix<u)-. (4)

283 () - 18{7) ().

We then have finally

Y, = -Bpﬂckuei(kt+x) o ‘ (5)

The magnitude Vv as scen from formulas (2) and (5) is .the

ratio of the amplitude of the lift component, arising from

the presence of the tralling vortices, to the increase in
the 1ift force conputed in aooordance to the stationary
hypothesils$ .

nax Yy

nax(¥y = Ya0)
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On figure 11 1s.shown how v depends on WP = ——, ¥When
p=0, P=0 and when pu = o, v =

ol

The anglie X 1s the phase shift of the force = T;
with respect to the force Yz = Yzo. TFigure 12 shows the
dependence of X on . When p =0

_ X =3
and when pn = o,
X =0
The moment M in the case consldered 1s now oxpressed
as follows:
— - az
My = Myp = = 28 (4 - B)1xe?*® 4+ on mcBelkt (6)

4
At large frequency, 1.0., when %? > 1l, +the effect

of the tralling vortices results in a detrease in the 1lift
force to one=half 1ts value obtained on the stationary
hypothesgis. )

- 1 ,— -
I, = =3 (Ta = Ygo)

k .
At small valucs of 1? ~» 0, l.0., at large horizon-

tal velocities, tae value of VvV 1s near zero and there-
fore Yz —> 0. In the latter case, the force obtained
eccording to the theory of motlon with constant clirculation

ls near in velue to the general actual force. It should
be observod that, as may bo seen from figure 12, Ty ap-
proaches goro rather slowly when p —» 0.

The suction force P 1s determlined with the ald of
formulas (Va). Since

1 Y(a)da Y5 p A ol (kt+X)
2n Vxo? ~ a3  2mp ac -8
Ja, i
therefore

1(kt+x)]a

P = EEE'{avlo + 8(av;) - RAvoe

whence
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.:.- - LT R . . PR ™ i .
P = E;E- [a.v,_o + Bgoos(kt + €,) = Agvcos(kt + €, + €3 +'X.)]

, . 5(7)

. 'In concluslon, we shall consider the projection of
the:general hydrodynamic foroe on the horizontal direg~-
tion. When tho wing has the form of a flat plate; wo have

7 L.
. -

T = ~(Y; +:Yg5.+ !3)5 * P

where B 1s the small anglé-of inclination of tha plate
to the horisontall

é = Bo ﬁd/nudt = Bo + é;;/p(ava - avl)dt

_ 2 3 R
= Bo + 5= 4o sin(kt + ¢, + €3) = o ein(kt +°¢,)

The mean value of tho horizontal component over a,
‘period 1is

et/

i”-!'. = E‘:_T.f X at = %"{Aoav (v- 2 a.ik' a:ln)l)'+ A, B, [ooa €2
. o ' . .

=2 cos (X + €) + 2 £E(Usin (% + €5) = sin.€'3>_|]}(8)

-
<

Yor tronslational oscillations
4o = Bgi. €3 .= 0

[]
-

In this case:

R A3 .
Xn! --&ﬂf‘—°-[1+ V2 - 20 cosx]>0

i.e,, we have'a forward thrust on the wing.

_ For purely rotatlionel oscilllaticons about the center
‘of the plate, By = O and therefore

= ) a3 e i :
- Sl g ﬂ-;-n—:v ['D ._2 ok s'in 'Xa]
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IX. FORCES ‘DURING ‘STEADY OSCILLATION OF A_PLANING PLATE

In applying the gonerel formulas derived 1n sectlon
Vii, it 1a first necessary to determine. a and

. . | § .
42 yners a ' -‘5- is half the wetted length. As tosts

have shown, the wetted length 1! 1s always sonewhat
larger than the part . under the surface level. On
figure 13 are presented data obtalnod from tests of
Sottorf (reference 3) and those conducted at the Central
Aero=Hydrodynanical Institute by Perelmuter (reference
12). The ratios 1'/1 are plotted as ordinates against

the aspect ratios % = A as absclssas. The tests were

carried out on flat plates. It 18 readlily observed from
édonslderation of the plotted data that 1' > 1. At large
aspect ratios

1t ~ 1,1 1%

At small aspect ratios correspoﬁding to a2 largo span 1!
nay oxceed 1 considerably.

To deétermine theorectically the ratio 1!'/1 for the
case of steady planing notlon of a plate of infinite span
is not possible if we limilt ourselves to the consideration
of the notlon of a welghtless 1deal fluld, Actually in
the flow about an inclined plate the height h of the
trailing edge above the level of the freo surface (fig.
14) approaches infinity as the distance from the plate in-
craasos (reference 1). For this reason, it 1s also impos=-
glble from such considerations to deternine the wetted
length below the surface level. In the flow of a heavy
fluld with spray formation, the fluid in front of the
plate cannot rise higher than a certealn level, depending
on the planing spesad. Fron the test data presented, it
is seen that the wetted length depends essentlally on the
span of the planing plate.

. Let us nake the assumption that, in unsteady motion,
1! depends only on 1 and that

11 = n!l . (1)
where n 18 'a constant coefficlent. The value of n nay

be obtalned from test data referring to that stationary
state wlth respect to which we consider the disturbed mo=-
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tion to take place. Glauert and Perring in .their paper on
the stabillity of a seaplane 1n planing asgune 1! = 1,
l.e¢y n=1 (reference 13) ' . o

It 1s necsssary here to make tho following resorva-
tion. On figure 13, 1t 1s seen that for small aspect
ratlos n. depends very duch on the’ aspect ‘ratio. ¥With
unsteady planing; the aspect ratio ils variable, so that
for those cases where it 1is small we have no previous as-
surance that 1t 1ls always permisslible to neglect the varl-
ations in n: At largze aspect ratios, however, the -varia~
tions In n are negligible.

Considering n as constant and the disturbances
snall, 8a may easlly be obtained, W¥Wo have

28a = 81! = ngf = ns & - BY _ 2808
B Bo Bo

ghere h 1is the immerslon of the tralling edge, ¥y = 8h,
= §f8.

. By aghf
8a 2o Bo ‘ (2)

2.2 T 22 (3)

We shall now proceed to the determination of the hy=-
drodynamlec forces. Retalning in formula II only small
quantlities of the first order, we have

pr ag d(avy) : 3 a
T - IO = 2 dt + pT. 00 5(578) + pm aocoﬂo 8o+ -5 '&%
8gcC P ‘ ;

J_E_.':;'

If M; 18 the moment of the hydrodynamic forces with
respoct to the trelling edge, then

Mz = M + (a0 + 8 a)(Y = Y,) + (8o + 8 &)Y,

From (III) and (VI), to an accuracy of the second order
of smallness, we find
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a=Mgg = -ET——— dy , praop d(avy) . praode 8(avy ) + pagcod (avy)

. . B . as 2
5 da 3 2 it '
_+P“50°0330Q—8°*“§ 1% +:§ prageo - fo 82 + ~F T (viI)

The variations: G(av ) and G(ava) nay be oxpressed by
the kinenatic elenents of- motion of the trailing edge. He
_have

dy _ (ag+ Sa)de
t

avy = (8 + Sa)(co + Bc)(Bo + e) + (a.o + 8a) 3t

and fron formula (32), retaining only scall quantities of
the first ‘order, we obtaln

Son &y _ ao® 28
8(avy) = 2~ U+ 807y > At + agBole (4)

and sinilarly

_ oim - - a _ .
8(av,) = —%— Yy + aoa% - aoa %% + cofgle - (5)

In determining the forces, the greatest difficulty
met with 1s in the conputaetion of Yz. To obtain this conpo-
nent, we shall conslder small steady osclllations for which

8(avy) =:g Aoikt (6)

"The 1ntegrnlzogﬁét{on for the determination of Y(a) in
this case 1s the samc as for the wing and therefore

RN %ﬁi; = - Rpmacpol(EtH) - (7)

Wo shall now consider in detall the forces acting on
the plate moving according to tho law

y = R Polkt

ikt | (8)

n
It

Qe
ge = B 1k Nolk®

where P, Q, and N are .complex constants.
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Using rTelatiouws, (2), (3), (4), (5), and (8), we find
. from formulas_ (VI) and (VII):

Y - T, = RoiEE {P"—;i (1l = velX)P = pmac(l + n = velXyikp

1 r

prrad - 1% "pma® 3
- 5= k® .PT- pra®c(2 = £ o*M)1kq + — k' q
+ pwoap(2 = velX)ixy - Pl'a:'-‘f B2 N } (9)

and.

Mg = Mz = geikt{% pnac®n(l - -]zév eiX')P

+ -g- pradc(l + n - pelX)ikp - ﬂ'éikar - -% prra®c?qQ

-2 pmato (L o L v ng v 3
zpnaczs B'De kq,+16p'rra."'kq
3 -

+ % pracp(2 - velX)iky - p"; BkaN} (10)

In the above formulas, the subscript o has'baen omitted
from those magnlitudos which correspond to steady planing.

Tormulas .(9) nnd (10) wore derived by us from the
goneranl expressions for the hydrodynamlc forces in un-
steady planing. It 1s lnteroesting to compare them wilth
the results which may be obtalned on the statlionary hypoth~-
esls or on the assumptions of Glauert aand Perring. The
statlonary hypothosls leads to tne formulas following:

Y =T, = pﬂ&(? +'%%> vp

2 at 1

vhere ‘M, 1s the moment with respect to the conter of the
wotted length. The moment with respect to the tralling
edgoe 1s equal to

B2
M1=pﬂa(0+2-d-'-27

s,

- . . ) ..a 0 * .
My = M, + aY; = E%f— c + 2 %% v, + pnas <§ + %%)'va
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Mg = Mg = EE—— a(avl) + pnacs(avs) +-§ pnacaﬁsa
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Retaining small terns of the first order only

T 4 Y= pﬂcs(ava) + pnaoﬂ(}o +'EF

T i -

¥ ) A
da

pra2cP (60 + 2 Y

+

- njor .

The above fornulas applied to the hnrnonio oscillations
under consideration give

Y.-Y°=E

and.

HB-

force

»

whero

o ikt {ﬂgﬂ'r + pmac (1 + 121-) 1kcP
-~ § pmascikq + apmioaikn} (11)
Mao = ikt {5— pnacanP + -g- prasc (1 + ) ikP
- %pnuacaq - 3 pra®cikxq + 3p11'a.3oBil:N} (1.2)

Glanort and Perring, in tholr papor cited adove,
nake the following assumptions to obtain tho hydrodynamic

1) In unsteady planing motion. the .11ft forco -is com-

q

- puted according to the foruula

Y = gsvep

l1s a constant coefficient proportional to the
wldth of the plate and to the density of the
fluila,

the wotted lonsth below the undisturbed water
" " lovel (fig. 15),

the magnlitude of the velocity of the polnt of
the plate coinciding with tho center of pros=
sure, . .

L

the angle botweon the plate and the velocity
direction.
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2) In unsteady planing notion, thé forocs Y 1is ap=

- w...Dplied ot a dlstance Qg from the trailing edge
whore @ is the value in steady planing...For
a plate ®='3/4, - : .

Using these assunptions, 4dlscarding terms.of higher .
order of smallness, and setting s = 2aj v, = ¢, wo ob-
tain - : - .

2dp cp dt 2 op dt ‘e

My - Mg, = 3Y v+ BYQa EZ._ 3!9a 8 9 Yga ae + 3 Yna B

2B 2cp 4t 3B 4 cf dt e .

The values of the hydrodynamlic forces obtained for the
harnonlc osclllations of a plate on the basls of the varl=-
ous -assunptlons nade are compared in the table below. -In
transferring the date from formulas (%), (10), (11), and
(12) to the table, the magnitude pwac?p has been replaced
by YO’ : . .

Translation by S. Relss,
Natlonal Advisory Conmittee
for Aeronautics.
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Comparison of Hydrodynamic Forces Obtained on the Basis of
Various Assumptions for Steady Harmonic Oscillations
with Respect to the Stationary Planing Condition

8h = RPei; B—RQe™; bc = RikNe  h

ol oo} ... . In the formulas for the lift Y - Y,
.| Coeffi- General Slow Rapid General [Accord-
cients . formula oscilla- | -oseil- formula |ing to,
‘ tions, lations .| accord- |assump-
large P->1.- ing to tions of
P:%a horizon- 1 "sta- . |Glauert
tal vel. V=3 | tiomary [ and-
- P=0 X=0 . | 'hypoth- |Perring-
v=0 7| eses™ L
vty B g n : "1. 1_
(—veh 5 b ') % g
ikt - s CoNn .
HoPeZ  H 4 tn—selly Lg Atmi (n+ %) I (F+0)% 2
P,? Pz P~2 .
% % ~% V0 °
0 0 0 0 0
Logiry | 2 3 1 & SRy
Y Qe = C@—g ey B 17 —lgy | ~lg3g
P_‘.". P‘Z p.z
% b % 0 °
@—ve'ly i %0 1 % i 20 2ip.
Y Netkt
a HZ P_ﬂ _ E
-3 -7 3 0 0
In the formulas for the moment with respect to :
- the trailing edge: M2 - Mg
_1 ix)i z 3n L 1
.(1 ") 8 B g 3 3
3 ikt B ) N s 1\ i i
5 YoPe Atn—se ) atmE  (nbg)d (1+3n) 3 ¥
o : _
5 —5 £ 0 0
1 _1 -1 -1 _1
[ B B 3 - B
ERNrvR | S BRI AL 1 s 14 i 1l
g YoaQe™ ,(2 37 7° )ﬁ —23% —233 —2F 153
3 3 3 ‘
CEE EF T 2 ¢
@—ve) 1 2ip 1 —;- i 2igs 2ip.
3 it . ' i
2 Yone -t pl
-3 -7
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o Data from Sottorf's paper

- ﬁ- s e+ e 1929 Co
Symbols| v fd .
,,,,, | Velocity | etar |of plore
v L s
a s | =
[y ‘. 27
v s 6
o | s . o3
. s w2 || K
@ 8 .
Q 9.6 228
'S 08 0,2 |
1932
° 3 o281 | o0.078
[ 3.48 | 0.6 ot
. 520 | 760 | 0228
Q [ 8 0.3
" ] 8,48 1,44 0.6
sv Y a v v &
8 by a-
’\
*
Y

&
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